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ABSTRACT

We apply texture image analysis to automated classification
of stem cell nuclei, based on the observation that chromatin
in human embryonic stem cells becomes more granular dur-
ing differentiation. Using known probability models for tex-
ture multiresolution decompositions, we derive likelihood ra-
tio test statistics. We also derive the probability density func-
tions of these non-Gaussian statistics and use them to evaluate
the performance of the classification test. Results indicate that
the test can distinguish with probability 0.95 between nuclei
that are pluripotent and those with varying degrees of differ-
entiation. The test recognizes nuclei with similar differentia-
tion level even if prior information says the contrary. This ap-
proach should be useful for classifying genome-wide epige-
netic changes and chromatin remodeling during human devel-
opment. Finally, the test statistics and their density functions
are applicable to a general texture classification problem.
Index Terms: texture, classification, stem cell, non Gaussian

1. INTRODUCTION

Biologists andmicroscopists routinely characterize chromatin
condensation by biochemical methods that require destruc-
tion of the specimen, which prevents evaluation of chromatin
dynamics and limits the use of complementary tests on the
same sample. Here, we evaluate a method of measuring chro-
matin compaction and organization using the live cell reporter,
GFP H2B. We evaluate the differences in chromatin conden-
sation as pluripotent human embryonic stem cells undergo
neuronal differentiation, and in addition evaluate the dynamic
changes in single nuclei over time. In [5, 7, 10] a state of
the art methodology is proposed for characterizing the char-
acteristics of stem cell colonies and nuclei using texture based
image analysis. The intent of the methodology, which has
been validated on several specimens, is to provide a decision
aid to the microscopist. The expectation is that a sound im-
age texture analysis methodology will be rapid, accurate, and
consistent, without altering the specimen under examination.

Work supported by NIH grant 1 R01 EB006161-01A2 and C.S. Draper
Laboratory, Cambridge Massachusetts.

The methodology used in [5, 7, 10] is based on a tex-
ture analysis approach suggested in [3] that combines mul-
tiresolution analysis and statistical modeling. Specifically, it
is assumed that a wavelet decomposition of a texture class
of interest yields random coefficients that possess a general-
ized Gaussian probability density function (pdf). Hypothe-
sis testing detection problems based on the generalized Gaus-
sian densities have also been considered in [1], and applied to
other biomedical applications, specifically functionalMRI [2].
In [3], an approximate textural library retrieval scheme

that uses the Kullback-Leibler (KL) distances is developed.
As discussed in [3], the KL distance is equivalent to the max-
imum likelihood approach when the sample size is small or
even large but finite only under certain restrictive conditions.
Moreover, correct classification performance is difficult to ob-
tain using the KL distance.
In this paper, we build upon and extend the work in the

abovementioned references by deriving likelihood ratio statis-
tics and their respective distributions for texture analysis. The
distributions can be used to obtain the performance of the
likelihood ratio based classifier. We show the derivation of the
statistics and their density functions in the next section. We
have validated this approach on several applications, includ-
ing generic textures, egg cells, stem cell colonies and individ-
ual nuclei. We describe one such application in Section 3, and
we illustrate the performance of the classifier on this applica-
tion in Section 4. Section 5 presents conclusions.

2. FORMULATION AND APPROACH

We first summarize the statistical nature of the decomposition
as established in [3]. Next, we formulate a likelihood ratio
test, derive the statistics, and their density functions.

2.1. Statistical Properties of Texture Wavelet Coefficients

It is shown in [3] that the values of the coefficients at each
wavelet subband have a generalized Gaussian distribution, or

f(x;ω, p) =
p

2ωΓ(1/p)
e−(|x|/ω)p

(1)
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where x is the random variable for a particular wavelet sub-
band of the texture, ω is a width parameter proportional to the
standard deviation, and p is a tail thickness shape parameter.
A third parameter, the location or mean, is found to be zero in
(1) for the subbands of interest. The term Γ(1/p) represents
the Gamma function. Note that when (p, ω) = (2,

√
2), we

have a standard Gaussian density. Each texture would have
a representative density function (1) at each decomposition
level. Thus, given a texture decomposition that provides B
wavelet bands, the characterizing pdf for that texture is

f(x1, . . . , xB;ω1, . . . , ωB, p1, . . . , pB) =
B∏

b=1

pb

2ωbΓ(1/pb)
e−(|xb|/ωb)

pb (2)

The above texture characterization is an approximation; it as-
sumes that the wavelet coefficients are statistically indepen-
dent across resolution levels. Though it may be approximate,
this statistical model of texture decomposition has been val-
idated on many types of textures [3]. In particular, it was
shown to be applicable to the analysis of stem cell colonies
in [5, 7] and to nuclei of various stem cell lineages in [10].
In all these references, the Kullback-Leibler distance is

used as a basis for classifying the texture. The KL distance
between two density functions f1 and f2 is given by

DKL(1, 2) =

∫
f1(x) ln

(
f2(x)

f1(x)

)
dx. (3)

That is, given a new texture that needs to be assigned to one
class from among C classes, we compute the wavelet coef-
ficients from samples for the new texture, and we use these
sample decompositions to estimate the generalized Gaussian
parameters [3]. We now have knowledge of the new texture’s
pdf, fnew, and can select the class c∗ whose pdf has the short-
est KL distance from the new texture’s pdf

c∗ = argmin
c

DKL(fnew, fc) (4)

As noted in [3], KL distance based classification is equivalent
to maximum likelihood classification only in the asymptotic
sense. For finite samples, however, this equivalence does not
hold, except for the unrealistic case where the shape parame-
ters have the same value in (2), when p1 = p2 = . . . = pB .

2.2. The Likelihood Ratio Test

We now formulate the likelihood ratio test and derive its statis-
tic for the purpose of classifying textures. The pdf of this
statistic is derived next and is used in Section 4 for evaluating
the performance of maximum likelihood texture classification
as applied to the evaluation of stem cell pluripotency level.
Consider the problem of assigning a texture to one of two

classes characterized by different generalized Gaussian den-
sity parameters for their wavelet decomposition. Assume we

have B subbands and S samples for this texture. Denote
the associated random variables by xsb, s = 1, . . . , S, and
b = 1, . . . , B. As in [3], we assume that the subband decom-
positions are independently distributed. Let Xs be the vector
of random variables from each of these samples s = 1, . . . , S.
We formulate the following binary hypothesis test

H0 : X1, . . . , Xb, . . . XS ∼ f0 =

B∏
b=1

S∏
s=1

f0b(xsb)(5)

H1 : X1, . . . , Xb, . . . , XS ∼ f1 =
B∏

b=1

S∏
s=1

f1b(xsb)(6)

where each of the densities p0b and p1b, b = 1, . . . , B is a
generalized Gaussian density function given in (1), with re-
spective parameters (ω1, p1), . . . , (ωB, pB).

2.2.1. The χp random variables

To derive the log-likelihood ratio statistic in Section 2.2.2 for
the above test and its density functions, we need to generalize
the χ2 random variable. For a generalized Gaussian random
variable x with parameters ω and p, define

χp =
∣∣∣x
ω

∣∣∣p (7)

For p = 2, we have the χ2 random variable, which is the
square of a standard normal variable. Likewise, χp is a gen-
eralization of χ2 with respect to the generalized Gaussian
variable with width parameter ω = 1, raised to the power
p, whose pdf is

fχp(x) =
1

Γ(1/p)
e−x|x|−1+1/p, x ≥ 0 (8)

The χ2
N , or the χ2 random variable with N degrees of free-

dom, is simply the sum of N independent χ2 random vari-
ables. Likewise, we can define the χp

N random variable to be
the sum of N independent χp random variables.
To go a step further, if the shape parameters are different

for each of the random variables in the sum, we can define,
with −→p = (p1, . . . , pN), the random variable

χ
−→p =

N∑
i=1

χpi

i (9)

The density function of the above random variable is obtained
by convolving the density functions of (8)

fχ
−→p (x) =

1

Γ(
∑N

i=1 1/pi)
e−x|x|−1+

∑
N
i=1

1/pi , x ≥ 0

(10)
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Fig. 1. (A-C) with increasing chromatin granularity, com-
pared to a control somatic endothelial cell (D). Bar in A is 10
μm.

2.2.2. The likelihood ratio statistic

The log-likelihood ratio for the hypothesis test (5-6) is ex-
pressed in terms of these new random variables. With N =
SB, where S is the number of samples for the texture and B
the number of wavelet bands per sample, we have

Λ (X1, . . . , Xs) = ln

∏B
b=1

∏S
s=1 f1b(xsb)∏B

b=1

∏S
s=1 f0b(xsb)

=

N∑
i=1

χp0i

i0 − χp1i

i0 +K

= χ
−→p 0

0 − χ
−→p 1

1 +K (11)

where K is a constant dependent on the scale and shape pa-
rameters. Now we have the test

χ
−→p 0

0 − χ
−→p 1

1

H1

≷

H0

T (12)

Here, T denotes the classification threshold that absorbs K .
The above methodology has been validated on generic tex-
tures as well as images of various stem cell nuclei. In the next
section, we describe one such application.

3. APPLICATION TO STEM CELL NUCLEI

Human embryonic stem cells (hESC, line UC06 from the NIH-
approved registry) were grown under standard conditions on
mouse feeder cells. Pluripotency of hESC was routinely con-
firmed by immunostaining for the pluripotency marker, Oct-
4. hESCs were induced to differentiate for up to 5 weeks by
plating on feeder cells at half the normal density, which in-
duced differentiation to early neuronal lineages as determined
by the neural marker, nestin [8]. We visualized chromatin
in living cells with a fluorescent histone that bound to DNA.
Cells were transiently transfected with a plasmid expressing
the histone H2B labeled with the fluorescent protein GFP [6].
4-D movies were acquired with a spinning disk microscope
(Perkin Elmer) using a 40x 1.3NA Nikon objective with a
resolution of 0.2 μm. We observed that nuclei in pluripotent
cells were small and chromatin was generally smooth textured
(Figure 1 A). During differentiation (Figure 1 B) we found
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Fig. 2. Probability of correctly identifying a pluripotent nu-
cleus (class 1) vs. probability of a false positive from partially
or totally differentiated nuclei.

that chromatin became more granular and did not vary over
time, unlike pluripotent cells. By 5 weeks (Figure 1 C), dif-
ferentiated stem cells were nearly as granular as an adult hu-
man vascular endothelial cell (Figure 1 D). Pluripotent nuclei
are physically very plastic and become less compliant during
differentiation due in part to chromatin condensation [9]. The
bright fluorescent regions within the nuclei that we observed
reflect compact chromatin supercoiling which limits acces-
sibility of DNA to soluble proteins [4]. Chromatin conden-
sation is biologically significant because transcription factors
and activators need to have access to DNA in order to ex-
press genes. The granularity of chromatin therefore reflects
the segregation of the nucleus into domains of high density
(bright areas, heterochromatin) and low density (dim areas,
euchromatin). Since heterochromatin generally contains si-
lenced genes, texture analysis provides a direct measure of
the degree of gene silencing by chromatin remodeling.

4. PERFORMANCE RESULTS

Figure 1 shows nuclear images of 4 cells at first time in a
time-lapse series of 9 images over a 10 minutes duration. The
last two classes are very close and are expected to be indis-
tinguishable. Of utmost importance is the ability to identify
totally pluripotent nuclei, while minimizing false positives.
Figure 2 plots the probability of correctly identifying such a
nucleus, against the probability of misclassifying a differenti-
ated nucleus from each of the other three classes as pluripo-
tent. Each differentiated class is shown by a separate curve.
It is shown, for instance, that for a probability of misclassi-
fication of less than 0.05, we have a correct classification of
larger than 0.95, for any of the three alternate classes.
Pairwise comparison of cells from various classes is shown
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Fig. 3. Pairwise hypothesis testing between classes A and B
(top left), A and C (top right), A and D (bottom left), and C
and D (bottom right). Cells for which the null hypothesisH0

is true are plotted in blue, while cells for which the alternative
hypothesisH1 is true are plotted in red. Results indicate that
the likelihood ratio statistics show clear separation between
pairs of classes.

in Figure 3. The marker GFP-H2B is imaged in each of the
4 cells shown in Figure 1 at 9 time points (Pluripotent cell A;
differentiated cell B; differentiated cell C; control endothe-
lial cell D). Because the cells from each class carry the same
color, and cells are segregated by colors, the results show that
the likelihood ratio test’s statistic described in (12) enables
clear separation between cells of distinct classes.

5. CONCLUSION

Results indicate that the likelihood ratio test and its derived
density function is a promising approach for texture classifi-
cation since it enables the evaluation of classification perfor-
mance. We have applied this test to several types of texture,
and as the results show for a class of stem cell nuclei, the test
can be a decision aid to the microscopist when evaluating cell
characteristics, for instance stem cell pluripotency. Reorgani-
zation of the genome occurs during embryonic development,
tumorigenesis, viral infection, DNA repair and apoptosis. The
ability to measure statistically significant changes in nuclear
texture will provide new ways of measuring these phenom-
ena. Current research focuses on applying the above test to
other cell cultures and on establishing high speed, reliable,
and widely applicable classification methods.

6. REFERENCES

[1] M. Desai, R. Mangoubi, “Robust Gaussian and non-Gaussian
matched subspace detection”, IEEE Trans. on Sig. Proc.,

Pp.3125-27.

[2] M. Desai, R. Mangoubi, J. Shah, W. Karl, D. Kennedy, H. Pien,
and A. Worth, “Functional MRI activity characterization using
curve evolution,” IEEE Trans. on Medical Imaging , Vol.21,
No. 11, Nov, 2002, pp. 1402-1412.

[3] M. N. Do and M. Vetterli, “Wavelet-based texture retrieval
using generalized Gaussian density and Kullback-Leibler dis-
tance,” IEEE Transactions on Image Processing, Vol. 11, no. 2,
, Feb. 2002, pp. 146–158.

[4] S. M. Gorisch, M. Wachsmuth, et al. “Histone acetylation in-
creases chromatin accessibility”, J. Cell Science, Vol. 118, Pt.
34, 2005, pp. 5835-34.

[5] C. Jeffreys, “Support vector machine and parametric wavelet-
based texture classification of stem cell images,” M.S., Mas-
sachusetts Institute of Technology, Cambridge, MA, June
2004.

[6] T. Kanda, K. Sullivan, et al. “Histone-GFP fusion protein en-
ables sensitive analysis of chromosome dynamics in living
mammalian cells” , Curr. Biology Vol. 8, No. 7, 1998, pp. 377-
85.

[7] R. Mangoubi, C. Jeffreys, A. Copeland, M. Desai, and P. Sam-
mak, “Non-invasive image based support vector machine clas-
sification of human embryonic stem cells,” Proc. IEEE Int’l
Symp. on Biomed. Imaging, Washington, D.C., April, 2007.

[8] J. A. Ozolek, E. P. Jane, et al. “Human embryonic stem cells
(HSF-6) show greater proliferation and apoptoses when grown
on glioblastoma cells than mouse embryonic fibroblasts at day
19 in culture: comparison of proliferation, survival, and neural
differentiation on two different feeder cell types.” Stem Cell
Dev. Vol. 16, No.3, 2007, pp.403-12.

[9] J. D. Pajerowski, K. N. Dahl, et al. “From the Cover: Physi-
cal plasticity of the nucleus in stem cell differentiation.” Proc.
Natl. Acad. Sci. USA , Vol 104, No.40, 2007, pp.15619-24.

[10] P. Sammak, V. Abraham, R. Ghosh, J. Haskins, E. Jane, P. Pet-
rosko, T. Erb, T. Kinney, C. Jeffreys, M. Desai, and R. Man-
goubi, “High Content Analysis of Human Embyonic Stem Cell
Growth and Differentiation,” Ch. 9. inHigh Content Screening,
S. Haney, ed., John Wiley and Sons, inc. To appear in 2008.

[11] N. R. C. Xu, S. Police and M. K. Carpenter, “Characterization
and enrichment of cardiomyocytes derived from human em-
bryonic stem cells,” Circ Res, vol. 91, no. 6, pp. 501–8, 2003.

383


